Chapitre 2.1 – Les vecteurs

Le vecteur

Le vecteur représente un **module** (**grandeur**) avec une **orientation**. On utilise la flèche pour le représenter graphiquement. Pour identifier une variable comme étant vectorielle, il suffit de mettre une « petite flèche » au-dessus de la variable :

Pointe de la flèche :

Orientation

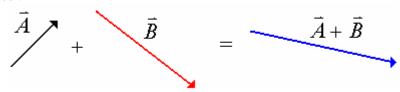
 \vec{A}

Longueur de la flèche:

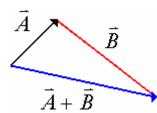
Module (Grandeur)

Addition graphique d'un vecteur

Un vecteur supporte l'opération de l'addition. Graphiquement, il suffit de mettre bout à bout les flèches :



car:

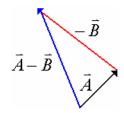


Soustraction graphique d'un vecteur

La soustraction est l'action d'inverser le sens d'un vecteur. Ainsi, la flèche point dans l'autre sens :



car:



Représentation mathématique d'un vecteur

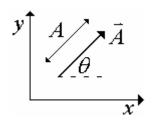
Puisqu'un vecteur représente une grandeur physique avec une orientation, on peut représenter mathématiquement un vecteur à l'aide d'un couple longueur et angle :

$$\vec{A} = (A, \theta)$$

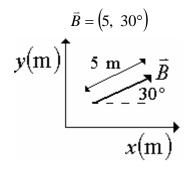
 \bar{A} : Le vecteur. où

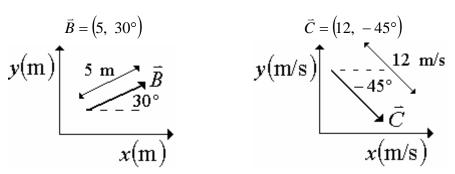
A: Le module du vecteur (la longueur).

 θ : Angle que fait le vecteur par rapport à un système d'axe.



Exemples:





La deuxième représentation mathématique d'un vecteur peut se faire à l'aide d'un couple longueur et longueur utilisant la définition de l'addition :

$$\vec{A} = (A_x, A_y) = \vec{A}_x + \vec{A}_y$$

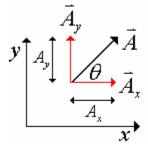
 \vec{A} : Le vecteur. où

 A_x : Longueur du vecteur projetée sur l'axe x.

 A_x : Longueur du vecteur projetée sur l'axe y.

 \vec{A}_{x} : Vecteur parallèle à l'axe x.

 \vec{A}_{y} : Vecteur parallèle à l'axe y.



On peut faire le lien entre les deux représentations grâce aux relations trigonométriques suivantes:

$$A_{r} = A\cos(\theta)$$

$$A_{v} = A\sin(\theta)$$

$$A = \sqrt{{A_x}^2 + {A_y}^2}$$

Vecteur unitaire

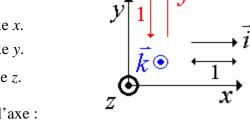
Le <u>vecteur unitaire</u> est un vecteur de <u>longueur 1</u> ayant une <u>direction particulière</u>. Certains sont alignés sur un axe du système de coordonnée. D'autres sont alignés dans une direction reliée à un concept physique. On utilise le « chapeau » (ex : \hat{n}) pour représenter un vecteur unitaire :

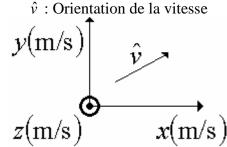
 \vec{i} ou \hat{x} : Vecteur unitaire aligné sur l'axe x.

 \vec{j} ou \hat{y} : Vecteur unitaire aligné sur l'axe y.

 \vec{k} ou \hat{z} : Vecteur unitaire aligné sur l'axe z.

Exemple vecteur unitaire pas aligné sur l'axe :





Module d'un vecteur

Le module d'un vecteur représente sa longueur (grandeur). On peut l'évaluer à l'aide du théorème de pythagore :

En deux dimensions:

$$|\vec{A}| = |(A, \theta)| = |(A_x, A_y)| = \sqrt{A_x^2 + A_y^2} = A$$

οù

et
$$A_x = A\cos(\theta)$$

$$A_{y} = A\sin(\theta)$$

 \vec{A} : Le vecteur étudié. et $A_x = A\cos(\theta)$ $|\vec{A}|$, A: La norme de \vec{A} . $A_y = A\sin(\theta)$ $A_y = A\sin(\theta)$ $A_x^2 + A_y^2$: Théorème de pythagore en 2D $A = \sqrt{A_x^2 + A_y^2}$

$$A = \sqrt{{A_x}^2 + {A_y}^2}$$

En trois dimensions:

$$|\vec{A}| = |(A, \theta, \phi)| = |(A_x, A_y, A_z)| = \sqrt{A_x^2 + A_y^2 + A_z^2} = A$$

 $\sqrt{{A_x}^2 + {A_y}^2 + {A_z}^2}$: Théorème de pythagore en 3D.

Norme d'un vecteur unitaire :

$$\left| \vec{i} \right| = 1 \quad \left| \vec{j} \right| = 1 \quad \left| \vec{k} \right| = 1 \quad \left| \hat{n} \right| = 1$$

Représentation d'un vecteur en vecteur unitaire

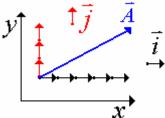
À l'aide de la définition de l'addition graphique d'un vecteur, on peut décomposer un vecteur quelconque en vecteur unitaire de la façon suivante :

$$\vec{A} = (A_x, A_y, A_z) = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$$

Exemple:

$$\vec{A} = (5,3) = 5 \ \vec{i} + 3 \ \vec{j}$$

$$\vec{\uparrow} \qquad \vec{A}$$



Addition algébrique d'un vecteur

Pour additionner des vecteurs algébriquement, il faut les représenter en vecteurs unitaires. Ainsi, tout comme l'addition graphique, on peut additionner les composantes x ensemble, les composantes y ensemble et les composantes z ensemble :

$$\vec{A} + \vec{B} = \sum_{i=1}^{N} (A_i + B_i) \hat{i}$$

où N: Nombre de dimensions au vecteur. (en : en 3D, N = 3)

i: Une dimension particulière du vecteur (ex: x, y)

 \hat{i} : Vecteur unitaire aligné sur l'axe i (ex: \vec{i} et x, \hat{y} et y)

Exemple en 2D:
$$\vec{A} + \vec{B} = (A_x \vec{i} + A_y \vec{j}) + (B_x \vec{i} + B_y \vec{j}) = (A_x + B_x) \vec{i} + (A_y + B_y) \vec{j}$$

Multiplication d'un vecteur par un scalaire

Puisque la multiplication est une répétition d'additions semblables, on peut définir la multiplication d'un vecteur par un scalaire de la façon suivante :

$$\alpha \vec{A} = \sum_{i=1}^{N} \alpha A_i \hat{i}$$

où α : Multiplicateur scalaire au vecteur ($\alpha \in \Re$)

Exemple en 2D: $\alpha \vec{A} = \alpha (A_x \vec{i} + A_y \vec{j}) = \alpha A_x \vec{i} + \alpha A_y \vec{j}$

Exemple en 3D: $\alpha \ \vec{A} = \alpha \left(A_x \ \vec{i} + A_y \ \vec{j} + A_z \ \vec{k} \right) = \alpha A_x \ \vec{i} + \alpha A_y \ \vec{j} + \alpha A_z \ \vec{k}$

Exercices

Exercice A: Vecteurs graphiques et algébriques. Soit les deux vecteurs :

$$\vec{A} = (4, 30^{\circ})$$
 et $\vec{B} = (7, -60^{\circ})$

- a) Dessinez les deux vecteurs avec l'échelle suivante 1 cm = 1 unité.
- b) Dessinez l'opération $\vec{C} = \vec{A} + \vec{B}$.
- c) Dessinez l'opération $\vec{C} = \vec{A} \vec{B}$.
- d) Exprimez mathématiquement les vecteurs \vec{A} et \vec{B} à l'aide des vecteurs unitaire \vec{i} et \vec{j} .
- e) Exprimez mathématiquement l'opération $\vec{C} = \vec{A} + \vec{B}$.
- f) Exprimez mathématiquement l'opération $\vec{C} = \vec{A} \vec{B}$.

Exercice B: *Vecteurs dans un plan cartésien.* Pour positionner des objets dans un plan cartésien, on peut utiliser la notation vectorielle. Il est alors très important de connaître l'origine (0,0) du plan cartésien.

Considérons l'objet A à la coordonnée (4,5) et un l'objet B à la coordonnée (7,2) :

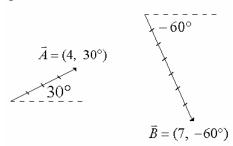
- a) Dessinez les deux vecteurs \vec{A} et \vec{B} partant de l'origine permettant de positionner l'objet A et B par rapport à l'origine.
- b) Évaluez mathématiquement les vecteurs \vec{A} et \vec{B} à l'aide des vecteurs \vec{i} et \vec{j} . Ceci représente le déplacement nécessaire en \vec{i} et \vec{j} pour passer de la coordonnée (0,0) à la coordonnée de l'objet A et B.
- c) Dessinez le vecteur \vec{C} représentant le déplacement nécessaire pour passer de l'objet A à l'objet B.
- d) Évaluez mathématiquement le vecteur \vec{C} à l'aide des vecteurs \vec{i} et \vec{j} .
- e) Trouvez une opération mathématique qui permet de construire le vecteur \vec{C} à partir des vecteur \vec{A} et \vec{B} . (Exemple : $\vec{C} = \vec{A} + \vec{B}$, $\vec{C} = \vec{A} \vec{B}$, $\vec{C} = 2\vec{A} + \vec{B}$)

Solutions

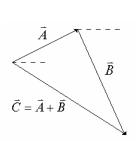
d)

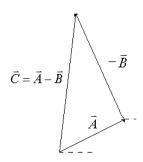
Exercice A: Vecteurs graphiques et algébriques.

a) **P.S.** ces dessins ne sont pas à l'échelle, mais l'idée est bien représentée.



b) c





 $\vec{A} = (4, 30^{\circ}) = 4 \cos(30^{\circ})\vec{i} + 4 \sin(30^{\circ})\vec{j} = 3,46 \ \vec{i} + 2 \ \vec{j}$

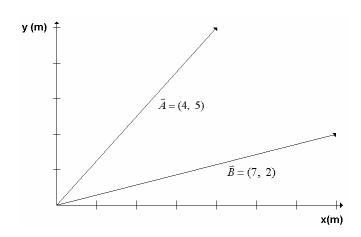
$$\vec{B} = (7, -60^{\circ}) = 7 \cos(-60^{\circ})\vec{i} + 4 \sin(30^{\circ})\vec{j} = 3.5 \ \vec{i} - 6.06 \ \vec{j}$$

e) $\vec{C} = \vec{A} + \vec{B} = (3,46 \ \vec{i} + 2 \ \vec{j}) + (3,5 \ \vec{i} - 6,06 \ \vec{j}) = (3,46 + 3,5)\vec{i} + (2 - 6,06)\vec{j} = 6,96 \ \vec{i} - 4,06 \ \vec{j}$

f)
$$\vec{C} = \vec{A} - \vec{B} = (3,46 \ \vec{i} + 2 \ \vec{j}) - (3,5 \ \vec{i} - 6,06 \ \vec{j}) = (3,46 - 3,5)\vec{i} + (2 + 6,06)\vec{j} = -0,04 \ \vec{i} - 8,06 \ \vec{j}$$

Exercice B: Vecteurs dans un plan cartésien.

a)

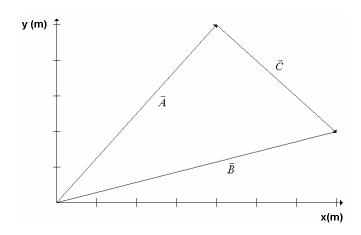


b)

$$\vec{A} = 4 \ \vec{i} + 5 \ \vec{j}$$

$$\vec{B} = 7 \ \vec{i} + 2 \ \vec{j}$$

c)



d)

$$\vec{C} = 3 \ \vec{i} - 3 \ \vec{j}$$

e)

$$\vec{C} = \vec{B} - \vec{A}$$

$$\vec{C} = \vec{B} - \vec{A}$$
 car $\vec{C} = \vec{B} - \vec{A} = \begin{pmatrix} 7 & \vec{i} + 2 & \vec{j} \end{pmatrix} - \begin{pmatrix} 4 & \vec{i} + 5 & \vec{j} \end{pmatrix} = 3 & \vec{i} - 3 & \vec{j}$